1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435

use std::io::*;
use std::fs::File;
use std::fs;
use byteorder::{BigEndian, WriteBytesExt, ReadBytesExt};
use std::fs::OpenOptions;
use std::cmp::Ord;
use std::cmp::Ordering;
use std::marker::PhantomData;
use std::fmt::Debug;
use std::iter::Iterator;


pub trait KnownSize {
    /// returns the fixed size of all objects ever created
    fn size() -> u64;
    /// reads the object from file, at address if specified.
    /// if the address is not specified, the object will be read
    /// from wherever the current seek is
    fn read(&mut File, Option<u64>) -> Result<Self>;
    /// writes the object to file, at address if specified.
    /// if the address is not specified, the object will be written
    /// to wherever the current seek is
    fn write(&self, &mut File, Option<u64>) -> Result<()>;
    /// writes a defaultversion of the Type to file
    /// if no address is specified, the default will be written
    /// to wherever the current seek of the file is.
    fn write_default(&mut File, Option<u64>) -> Result<()>;
}

const FreeAdrr: u64 = 24;
const EoF: u64 = 32;
const Elementcount: u64 = 8;
const Root: u64 = 0;

pub enum MetaAddress {
    Root = 0,
    Order = 16,
    Elementcount = 8,
    FreeAdrr = 24,
}

#[derive(PartialEq)]
pub enum Side {
    Right,
    Left
}
#[derive(Debug)]
pub struct Bstar<T: Debug + PartialOrd + KnownSize> {
    pub root: u64,
    pub elementcount: u64,
    pub order: u64,
    pub freeaddr: u64,
    pub eof: u64,
    pub allowduplicates: bool,
    pub target: String,
    meta: File,
    dat: File,
    type_save: PhantomData<T>,
}

impl<T: KnownSize + PartialOrd + Clone + Debug> Bstar<T> {
    pub fn delete(name: &str) -> Result<()> {
        try!(fs::remove_file(format!("{}.{}", name, "bsdat")));
        try!(fs::remove_file(format!("{}.{}", name, "bsmet")));
        Ok(())
    }

    /// Loads a Bstar object from the specified name/path
    pub fn load(name: &str) -> Result<Bstar<T>>{

        let mut _file = OpenOptions::new()
        .read(true)
        .write(true)
        .open(format!("{}.{}", name, "bsdat"));

        let mut dat = match _file {
            Ok(f) => f,
            Err(err) => return Err(err),
        };

        _file = OpenOptions::new()
        .read(true)
        .write(true)
        .open(format!("{}.{}", name, "bsmet"));

        let mut meta = match _file {
            Ok(f) => f,
            Err(err) => return Err(err),
        };

        try!(meta.seek(SeekFrom::Start(0)));

        let root = try!(meta.read_u64::<BigEndian>());
        let elementcount = try!(meta.read_u64::<BigEndian>());
        let order = try!(meta.read_u64::<BigEndian>());
        let free_addr = try!(meta.read_u64::<BigEndian>());
        let eof = try!(meta.read_u64::<BigEndian>());
        let allowduplicates = if try!(meta.read_u8()) == 0 {
            false
        } else {
            true
        };
        let mut target: String = "".into();
        try!(meta.read_to_string(&mut target));
        meta.seek(SeekFrom::Start(0));
        dat.seek(SeekFrom::Start(0));
        Ok(Bstar {
            root: root,
            order: order,
            elementcount: elementcount,
            freeaddr: free_addr,
            eof: eof,
            allowduplicates: allowduplicates,
            target: target,
            meta: meta,
            dat: dat,
            type_save: PhantomData
        }
        )

    }


    /// Creates a new permanent Bstar object.
    /// target is the name of the table holding the data records,
    /// order*2 specifies the maximal amount of keys stored per node in the tree
    pub fn create(name: &str, target: &str, order: u64) -> Result<Bstar<T>> {
        let allowduplicates = false;
        let mut _file = OpenOptions::new()
        .read(true)
        .write(true)
        .create(true)
        .open(format!("{}.{}", name, "bsdat"));

        let mut dat = match _file {
            Ok(f) => f,
            Err(err) => return Err(err),
        };

        _file = OpenOptions::new()
        .read(true)
        .write(true)
        .create(true)
        .open(format!("{}.{}", name, "bsmet"));

        let mut meta = match _file {
            Ok(f) => f,
            Err(err) => return Err(err),
        };

        try!(meta.seek(SeekFrom::Start(0)));

        // IMPORTANT: Update the root start when changing B-tree fields!
        try!(meta.write_u64::<BigEndian>(0));
        // Write Elementcount
        try!(meta.write_u64::<BigEndian>(0));
        // Order meta
        try!(meta.write_u64::<BigEndian>(order));
        // Write first free address meta
        try!(meta.write_u64::<BigEndian>(0));
        // Write eof
        try!(meta.write_u64::<BigEndian>(0));
        // Write allowduplicates
        if allowduplicates {
            try!(meta.write_u8(1));
        } else {
            try!(meta.write_u8(0));
        };

        try!(meta.write_all(target.as_bytes()));

        meta.seek(SeekFrom::Start(0));
        dat.seek(SeekFrom::Start(0));
        Ok(Bstar {
            root: 0,
            order: order,
            elementcount: 0,
            freeaddr: 0,
            eof:0,
            allowduplicates: allowduplicates,
            target: target.into(),
            meta: meta,
            dat: dat,
            type_save: PhantomData,
        }
        )
    }

    /// resets the tree to 0 elements
    pub fn reset(&mut self) -> Result<()> {
        try!(self.update_root(0));
        try!(self.update_free_addr(0));
        try!(self.update_eof(0));
        Ok(())
    }

    /// returns the rootnode of the tree
    pub fn get_root(&mut self) -> Result<Bnode<T>> {
        Ok(try!(Bnode::read(&mut self.dat, Some(self.root))))
    }

    /// prints a debug version of the tree
    pub fn debug_print(& mut self) -> Result<()>{
        let root = self.root;
        Ok(try!(self.debug_print_rec(root,"")))
    }

    fn debug_print_rec(&mut self, addr: u64, delim: &str) -> Result<()> {
        let node = try!(Bnode::<T>::read(& mut self.dat, Some(addr)));
        print!("{}{}:  ",delim, addr);
        for key in &node.node_list.list {
            print!("{:?} => {:?} ;  ",key.key, key.addr);
        }
        println!("");
        if !node.is_leaf  {
            for key in node.node_list.list {
                try!(self.debug_print_rec(key.addr,&format!("{}{}",delim,"|----")));
            }
        }
        Ok(())
    }

    /// searches for key in the tree and returns the KeyAddr object or None
    pub fn lookup_keyaddr(&mut self, key: T) -> Result<Option<KeyAddr<T>>> {
        let lookup = try!(self.lookup_internal(& KeyAddr::new(key.clone(),0)));
        if lookup.found {
            Ok(Some(KeyAddr::new(key, lookup.target.unwrap())))
        } else {
            Ok(None)
        }
    }

    /// inserts a keyaddr object
    pub fn insert_keyaddr(&mut self, key: KeyAddr<T>) -> Result<bool> {
        let lookup = try!(self.lookup_internal(&key));

        if lookup.bnode.is_some() {

            if lookup.found && !self.allowduplicates {
                // Key already exists
                Ok(false)
            } else {
                // Key does yet not exist
                let mut originalnode = lookup.bnode.unwrap();

                if originalnode.node_list.elementcount == self.order * 2 {
                    // Node Overflow: split up and generate new father
                    originalnode.node_list.insert(key);

                    try!(self.inc_elementcount());
                    try!(self.delegate_overflow_father(&mut originalnode, lookup.addr));
                    Ok(true)

                } else {
                    // Normal Insert
                    if originalnode.node_list.insert(key) == 0 {
                        // key for reaching this node changed!
                        let oldkey = originalnode.node_list.get_by_index(1).unwrap().key.clone();
                        try!(self.delegate_reaching_key(&mut originalnode, oldkey ));
                    }

                    try!(originalnode.write(&mut self.dat, Some(lookup.addr)));

                    try!(self.inc_elementcount());

                    Ok(true)
                }
            }



        } else {
            // if tree is empty create new root node
            try!(self.dat.seek(SeekFrom::Start(lookup.addr)));
            let mut list = SortedList::<KeyAddr<T>>::with_capacity((self.order * 2) as usize);
            list.insert(key);
            let mut node = Bnode::create(list, 0, None, None, true, true, self.order);
            try!(node.write(&mut self.dat, Some(lookup.addr)));

            try!(self.inc_elementcount());
            Ok(true)
        }
    }


    fn delegate_overflow_father(&mut self, node: &mut Bnode<T>, addr: u64) -> Result<Bnode<T>>{
        if node.node_list.elementcount <= self.order * 2 {
            try!(node.write(&mut self.dat, Some(addr)));
            Bnode::<T>::read(&mut self.dat, Some(addr))

        } else {
            let fatheraddr = node.father;
            let index = node.node_list.elementcount as usize / 2;
            let rightlist = node.node_list.split_by_index(index);
            // right son: father address will be changed later in this function, depending on
            // the context
            // leftbrother will be the original node, rightbrother is the old original nodes right
            // brother
            let mut rightson = Bnode::create(rightlist,
                            fatheraddr,
                            Some(addr),
                            node.rightbrother,
                            node.is_leaf,
                            false,
                            self.order);


            // For the father: create left and right son keyaddr that need to be inserted.
            let leftkey = node.node_list.get_by_index(0).unwrap().key.clone();
            let rightkey = rightson.node_list.get_by_index(0).unwrap().key.clone();
            let rightaddr = try!(self.use_free_addr());
            let rightkeyaddr = KeyAddr::new(rightkey, rightaddr);

            // update the original nodes right brothers left brother pointer
            if node.rightbrother.is_some() {
                let mut tmp = try!(Bnode::<T>::read(&mut self.dat,
                                    Some(node.rightbrother.unwrap())));
                tmp.leftbrother = Some(rightaddr);
                try!(tmp.write(&mut self.dat, node.rightbrother));
            }

            // the original nodes right brother will be the new created rightson
            node.rightbrother = Some(rightaddr);


            if !rightson.is_leaf  {
                for key in &rightson.node_list.list {
                    try!(self.dat.seek(SeekFrom::Start(key.addr)));
                    self.dat.write_u64::<BigEndian>(rightaddr);
                }
            }

            let leftaddr = addr;
            if node.is_root {

                // original node was the root node
                let newrootaddr = try!(self.use_free_addr());
                let leftaddr = addr;
                let leftkeyaddr = KeyAddr::new(leftkey, leftaddr);


                // left son: father as rightson.
                // since the nodelist of original was changed already, original is the new left son

                node.father = newrootaddr;
                node.is_root = false;
                rightson.father = newrootaddr;
                let mut node_list = SortedList::<KeyAddr<T>>::new();
                node_list.insert(leftkeyaddr);
                node_list.insert(rightkeyaddr);
                let mut newroot = Bnode::create(node_list,
                                    self.root,
                                    None,
                                    None,
                                    false,
                                    true,
                                    self.order);


                // update the new root position
                self.update_root(newrootaddr);
                // and write the new root to disc
                try!(newroot.write(&mut self.dat, Some(newrootaddr)));

                // update the lef son data
                try!(node.write(&mut self.dat, Some(leftaddr)));
                // TODO: think about effective way of rewriting the node!!!

                // write the right son to his new position
                try!(rightson.write(&mut self.dat, Some(rightaddr)));
                // increase elementcount of tree
                Ok(newroot)

            } else {
                // inner node or leaf:
                let mut father = try!(Bnode::<T>::read(&mut self.dat, Some(fatheraddr)));
                // insert the new keyaddr for right son
                father.node_list.insert(rightkeyaddr);

                // update rightsons father address
                rightson.father = fatheraddr;
                // write rightson to disk
                try!(rightson.write(&mut self.dat, Some(rightaddr)));

                // update the original nodes data, no rewrite required! the only thing that
                // changed is the elementcount, yet these changes are TODO implemented
                node.write(&mut self.dat, Some(leftaddr));

                // deligate possible problem to father node
                self.delegate_overflow_father(&mut father, fatheraddr)

            }
        }
    }

    fn delegate_reaching_key(&mut self, node: &mut Bnode<T>, oldkey: T) -> Result<()>{
        if !node.is_root {
            let keyofinterest = node.node_list.get_by_index(0).unwrap().key.clone();
            //let oldkeyofinterest = node.node_list.get_by_index(1).unwrap().key.clone();
            let mut father = try!(Bnode::<T>::read(&mut self.dat, Some(node.father)));
            //let newoldkey = father.node_list.get_by_index(1).unwrap().key.clone();
            let sonaddress = father.node_list.delete_by_key(
                            &KeyAddr::new(oldkey.clone(), 0)
                            ).unwrap().addr;
            let keyaddr = KeyAddr::<T>::new(keyofinterest , sonaddress);
            if father.node_list.insert(keyaddr) == 0 {
                try!(father.write(&mut self.dat, Some(node.father)));
                self.delegate_reaching_key(&mut father, oldkey)
            } else {
                try!(father.write(&mut self.dat, Some(node.father)));
                Ok(())
            }

        } else {
            Ok(())
        }
    }

    /// searches for the key and deletes and returns the keyaddr object
    pub fn delete_keyaddr(&mut self, key: T) -> Result<Option<KeyAddr<T>>> {
        if self.elementcount == 0 {
            Ok(None)
        } else {
            let lookup  = try!(self.lookup_internal(&KeyAddr::<T>::new(key.clone(), 0 )));
            if lookup.found {
                try!(self.delegate_underflow_node(&mut lookup.bnode.unwrap(),
                                                 lookup.index.unwrap(),
                                                 lookup.addr));

                try!(self.dec_elementcount());
                Ok(Some(KeyAddr::<T>::new(key, lookup.target.unwrap())))

            } else {
                Ok(None)
            }
        }
    }

    // node: Node found.
    // keyindex: the index of the key to be deleted
    // nodeaddr: the address of the node
    fn delegate_underflow_node(&mut self,
                    node: &mut Bnode<T>,
                    keyindex: u64,
                    nodeaddr: u64)
                    -> Result<()>
        {
        if node.node_list.elementcount > self.order {
            // normal delete
            let res = node.node_list.delete_by_index(keyindex as usize);
            if keyindex == 0 {
                try!(self.delegate_reaching_key(node, res.unwrap().key));
            }
            node.write(&mut self.dat, Some(nodeaddr));
        } else {
            if node.is_root {
                // delete from root
                if node.node_list.elementcount <= 2 {
                    // delete old root if root elements is 2 or less
                    if node.is_leaf  {
                        // root is the only node
                        // TODO: you know the index, use it to make Deletion efficient!!!
                        if node.node_list.elementcount == 2 {
                            node.node_list.delete_by_index(keyindex as usize);
                            node.write(&mut self.dat, Some(nodeaddr));
                        } else {
                            self.update_free_addr(0);
                            self.update_root(0);
                            self.update_eof(0);
                            self.dat.set_len(0);
                        }
                    } else {
                        // root is not the only node => update node to it's remaining son
                        self.update_free_addr(nodeaddr);
                        self.update_root(node.node_list.list[0].addr);
                        let mut newroot = try!(Bnode::<T>::read(&mut self.dat, Some(self.root)));

                        // TODO: effective root info change possible!!!
                        newroot.is_root = true;
                        try!(newroot.write(&mut self.dat, Some(self.root)));
                    }
                } else {
                    // normal
                    node.node_list.delete_by_index(keyindex as usize);
                    node.write(&mut self.dat, Some(nodeaddr));
                }
            } else {
                // Node is no root and does not have enough keys to delete from
                let deleted = node.node_list.delete_by_index(keyindex as usize).unwrap();

                let mut father = try!(Bnode::<T>::read(&mut self.dat, Some(node.father)));
                // calculate the index the node has on father
                let mut indexonfather = father.node_list.get_index_by_key(&deleted).1;
                if father.node_list.list[indexonfather].gt(&deleted) && indexonfather != 0 {
                    indexonfather -= 1;
                }
                if keyindex == 0 {
                    try!(self.delegate_reaching_key(node, deleted.key.clone()));
                    father = try!(Bnode::<T>::read(&mut self.dat, Some(node.father)));
                }

                //TODO: more effective through right and left brother address in Bnode
                // right brother
                let rightbaddr = match father.node_list.get_by_index(indexonfather + 1) {
                    Some(keyaddr) => Some(keyaddr.addr),
                    None => None,
                };
                // left brother
                let leftbaddr = match indexonfather {
                    0 => None,
                    _ => Some(father.node_list.get_by_index(indexonfather - 1).unwrap().addr),
                };
                // determine which son to choose
                let mut peernode = {
                    if rightbaddr != None && leftbaddr != None {
                        // compare size ofbrother nodes
                        let rightbnode = try!(Bnode::<T>::read(&mut self.dat,
                                                                Some(rightbaddr.unwrap())));
                        let leftbnode = try!(Bnode::<T>::read(&mut self.dat,
                                                                Some(leftbaddr.unwrap())));
                        if rightbnode.node_list.elementcount > leftbnode.node_list.elementcount {
                            (rightbnode, Side::Right, rightbaddr.unwrap())
                        } else {
                            (leftbnode, Side::Left, leftbaddr.unwrap())
                        }
                    } else if rightbaddr == None {
                        // return left brother
                        (try!(Bnode::<T>::read(&mut self.dat, Some(leftbaddr.unwrap()))),
                                                                    Side::Left,
                                                                    leftbaddr.unwrap())
                    } else {
                        // return right brother
                        (try!(Bnode::<T>::read(&mut self.dat, Some(rightbaddr.unwrap()))),
                                                                    Side::Right,
                                                                    rightbaddr.unwrap())
                    }

                };

                let mut merged = false;
                if peernode.0.node_list.elementcount <= self.order {
                    // merge the two brothers if peer has too little elements
                    if peernode.1 == Side::Left {
                        // peer ond left side => append node list to peer list.
                        for i in 0..(node.node_list.elementcount) {
                            let tmp = node.node_list.delete_by_index(0);
                            peernode.0.node_list.insert_at_index(0, tmp.unwrap());
                        }
                        // node can be deleted
                        try!(self.update_free_addr(nodeaddr));

                        // update left and rightbrother addresses
                        if node.rightbrother.is_some() {
                            let mut tmp = try!(Bnode::<T>::read(&mut self.dat,
                                                Some(node.rightbrother.unwrap())));
                            tmp.leftbrother = node.leftbrother;
                            try!(tmp.write(&mut self.dat, node.rightbrother));
                        }
                        peernode.0.rightbrother = node.rightbrother;

                        // write peer to disk
                        try!(peernode.0.write(&mut self.dat, Some(peernode.2)));
                        // delete original nodes reaching key from father by recursion
                        try!(self.delegate_underflow_node(&mut father,
                                                            indexonfather as u64,
                                                            node.father));
                    } else {
                        // peer on right side => append peer list to node list
                        for i in 0..(peernode.0.node_list.elementcount) {
                            let tmp = peernode.0.node_list.delete_by_index(0);
                            node.node_list.insert_at_index(0, tmp.unwrap());
                        }
                        // right hand side peer can be deleted
                        // TODO: file.set_len if the deleted node was the last!
                        try!(self.update_free_addr(peernode.2));
                        // write node to disk

                        // update left and rightbrother addresses
                        if peernode.0.rightbrother.is_some() {
                            let mut tmp = try!(Bnode::<T>::read(&mut self.dat,
                                                Some(peernode.0.rightbrother.unwrap())));
                            tmp.leftbrother = peernode.0.leftbrother;
                            try!(tmp.write(&mut self.dat, peernode.0.rightbrother));
                        }
                        node.rightbrother = peernode.0.rightbrother;

                        // write node to disk
                        try!(node.write(&mut self.dat, Some(nodeaddr)));
                        // delete right peer reaching key from father by recursion
                        try!(self.delegate_underflow_node(&mut father,
                                                            (indexonfather + 1) as u64,
                                                            node.father));
                    }
                    merged = true;

                } else {
                    // distribute nodelists from both nodes equally

                    let peerlength = peernode.0.node_list.elementcount;
                    let mut nodelength = node.node_list.elementcount;

                    if peernode.1 == Side::Left {
                        // peer is left node
                        for i in 0..((peerlength - nodelength)/2) {
                            let tmp = peernode.0.node_list
                                            .delete_by_index((peerlength-i-1) as usize);
                            node.node_list.insert_at_index(0, tmp.unwrap());
                        }


                        father.node_list.get_by_index(indexonfather).unwrap().key =
                            node.node_list.get_by_index(0).unwrap().key.clone();
                    } else {
                        for i in 0..((peerlength - nodelength)/2) {
                            let tmp = peernode.0.node_list.delete_by_index(0);
                            node.node_list.insert_at_index(nodelength as usize, tmp.unwrap());
                            let mut nodelength = node.node_list.elementcount;
                        }
                        father.node_list.get_by_index(indexonfather + 1).unwrap().key =
                            peernode.0.node_list.get_by_index(0).unwrap().key.clone();
                    }
                }

                if !merged {
                    try!(peernode.0.write(&mut self.dat, Some(peernode.2)));
                    node.write(&mut self.dat, Some(nodeaddr));
                    // TODO: Make more effective disc usage: update the father
                    // only on the index where it is changed
                    father.write(&mut self.dat, Some(node.father));
                }
            }
        }
        Ok(())
    }


    fn inc_elementcount(&mut self) -> Result<()> {
        self.elementcount += 1;
        self.meta.seek(SeekFrom::Start(8));
        Ok(try!(self.meta.write_u64::<BigEndian>(self.elementcount)))
    }

    fn dec_elementcount(&mut self) -> Result<()> {
        self.elementcount -= 1;
        self.meta.seek(SeekFrom::Start(8));
        Ok(try!(self.meta.write_u64::<BigEndian>(self.elementcount)))
    }

    fn update_root(&mut self, root: u64) -> Result<()> {
        self.root = root;
        try!(self.meta.seek(SeekFrom::Start(Root)));
        Ok(try!(self.meta.write_u64::<BigEndian>(root)))
    }

    // returns the lookupinfo
    fn lookup_internal(&mut self, key: &KeyAddr<T>) -> Result<InternalLookup<T>> {
        if self.elementcount == 0 {
            // if tree is empty
            Ok(InternalLookup {
                found: false,
                bnode: None,
                addr: try!(self.use_free_addr()),
                index: None,
                target: None} )

        } else {
            // tree is not empty
            let mut addr = self.root;
            let mut node = try!(Bnode::<T>::read(& mut self.dat, Some(addr)));
            if !self.allowduplicates {
            let mut res = node.node_list.get_index_by_key(key);
                // from the root starting search down to the leaf
                while !node.is_leaf {
                    let mut index = res.1;
                    if node.node_list.list[index].gt(key) && index != 0 {
                        index -= 1;
                    }

                    addr = node.node_list.get_by_index(index).unwrap().addr;
                    node = try!(Bnode::<T>::read(&mut self.dat, Some(addr)));
                    res = node.node_list.get_index_by_key(key);
                }

                let mut target = None;
                let mut found = false;
                if res.0 {
                    target = Some(node.node_list.get_by_index(res.1).unwrap().addr);
                    found = true;
                }

                Ok(InternalLookup {
                    found: found,
                    bnode: Some(node),
                    addr: addr,
                    index: Some(res.1 as u64) ,
                    target: target,
                })

            } else {
                self.internal_lookup_duplicates(&mut node, addr, key)
            }
        }
    }

    fn internal_lookup_duplicates(& mut self, node: &mut Bnode<T>, addr: u64, key: &KeyAddr<T>)
                                                        -> Result<InternalLookup<T>> {
        let mut res = node.node_list.get_index_by_key(key);
        if !node.is_leaf {
            if res.0 && res.1 != 0 {
                let mut newaddr = node.node_list.get_by_index(res.1 - 1).unwrap().addr;
                let mut tryleft = try!(Bnode::<T>::read(&mut self.dat, Some(newaddr)));
                let lookup = try!(self.internal_lookup_duplicates(&mut tryleft, newaddr, key));
                if !lookup.found {
                    newaddr = node.node_list.get_by_index(res.1).unwrap().addr;
                    let mut newnode = try!(Bnode::<T>::read(&mut self.dat, Some(newaddr)));
                    self.internal_lookup_duplicates(&mut newnode, newaddr, key)
                } else {
                   Ok(lookup)
                }
            } else {
                let mut index = res.1;
                if node.node_list.list[index].gt(key) && index != 0 {
                    index -= 1;
                }

                let newaddr = node.node_list.get_by_index(index).unwrap().addr;
                let mut newnode = try!(Bnode::<T>::read(&mut self.dat, Some(newaddr)));
                self.internal_lookup_duplicates(&mut newnode, newaddr, key)
            }
        } else {
            let mut target = None;
            let mut found = false;
            if res.0 {
                target = Some(node.node_list.get_by_index(res.1).unwrap().addr);
                found = true;
            }
            let resnode = try!(Bnode::<T>::read(&mut self.dat, Some(addr)));
            Ok(InternalLookup {
                found: found,
                bnode: Some(resnode),
                addr: addr,
                index: Some(res.1 as u64) ,
                target: target,
            })
        }
    }

    // uses the next free address and updates meta data
    // USE ONLY IF INSTERTING A NEW NODE TO THE FREE ADDR!!!
    fn use_free_addr(&mut self) -> Result<u64> {
        if self.freeaddr != self.eof {
            try!(self.dat.seek(SeekFrom::Start(self.freeaddr)));
            let next_free = try!(self.dat.read_u64::<BigEndian>());
            try!(self.meta.seek(SeekFrom::Start(FreeAdrr)));
            try!(self.meta.write_u64::<BigEndian>(next_free));
            let tmp = self.freeaddr;
            self.freeaddr = next_free;
            Ok(tmp)
        } else {
            let tmp = self.freeaddr;
            self.freeaddr += Bnode::<T>::size(self.order);
            self.eof = self.freeaddr;
            try!(self.meta.seek(SeekFrom::Start(FreeAdrr)));
            try!(self.meta.write_u64::<BigEndian>(self.freeaddr));
            try!(self.meta.write_u64::<BigEndian>(self.eof));
            Ok(tmp)
        }
    }

    // Idea: next Free Address is stored in .meta
    // If a node is deleted, free address in meta is updated to
    // the nodes address and the node space is used to store a pointer to
    // the last free address.
    // Importend!!!!!!!!! THIS WILL MAKE THE NODE AT addr INVALID!!
    // ONLY USE AFTER DELETING THE NODE AT addr!!!!!!!!!!!
    fn update_free_addr(&mut self, addr: u64) -> Result<()>{
        if addr + Bnode::<T>::size(self.order) == self.eof {
            try!(self.dat.set_len(addr));
            self.eof=addr;
            try!(self.meta.seek(SeekFrom::Start(EoF)));
            try!(self.meta.write_u64::<BigEndian>(addr));
        } else {
            try!(self.meta.seek(SeekFrom::Start(FreeAdrr)));
            try!(self.dat.seek(SeekFrom::Start(addr)));
            try!(self.dat.write_u64::<BigEndian>(self.freeaddr));
            try!(self.meta.write_u64::<BigEndian>(addr));
            self.freeaddr = addr;
        }
        Ok(())
    }

    fn update_eof(&mut self, addr: u64) -> Result<()> {
        self.eof = addr;
        try!(self.meta.seek(SeekFrom::Start(EoF)));
        try!(self.meta.write_u64::<BigEndian>(addr));
        Ok(())
    }


    /// returns an iterator for the elements of the tree
    pub fn iter(&mut self) -> Bterator<T> {
        let mut onode = Bnode::<T>::read(&mut self.dat, Some(self.root));
        let dummy = Bnode::<T>::create(
                                    SortedList::<KeyAddr<T>>::new(),
                                    0,
                                    None,
                                    None,
                                    false,
                                    false,
                                    0);
        if onode.is_ok() {
            let mut node = onode.unwrap();
            let mut addr = self.root;
            while !node.is_leaf {
                // if node is no leaf there is always a element at index 0.
                addr = node.node_list.get_by_index(0).unwrap().addr;
                onode = Bnode::<T>::read(&mut self.dat, Some(addr));
                if onode.is_ok() {
                    node = onode.unwrap();
                } else {
                    return Bterator { dat: &mut self.dat,
                                    addr: addr,
                                    node: dummy,
                                    direction: IterDirection::Forward }
                }
            }
            Bterator { dat: &mut self.dat,
                        addr: addr,
                        node: node,
                        direction: IterDirection::Forward }
        } else {
            Bterator { dat: &mut self.dat,
                        addr: 0,
                        node: dummy,
                        direction: IterDirection::Forward }
        }
    }


    /// returns a specific iterator moving in the specified direction
    /// if a key is given to the function with the Option to include or exclude it,
    /// the iterator will do so.
    /// It does not matter if the key is in the tree or not.
    pub fn iter_options(&mut self, direction: IterDirection, key: Option<IterOption<T>> )
                                                                                 -> Bterator<T>
    {
        let dummy = Bnode::<T>::create(
                    SortedList::<KeyAddr<T>>::new(),
                    0,
                    None,
                    None,
                    false,
                    false,
                    0);
        if key.is_none() {
            if direction == IterDirection::Forward {
                return self.iter();
            } else {
                let mut onode = Bnode::<T>::read(&mut self.dat, Some(self.root));

                if onode.is_ok() {
                    let mut node = onode.unwrap();
                    let mut addr = self.root;
                    let mut index = node.node_list.elementcount - 1;
                    while !node.is_leaf {
                        // if node is no leaf there is always a element at index 0.
                        addr = node.node_list.get_by_index(index as usize).unwrap().addr;
                        onode = Bnode::<T>::read(&mut self.dat, Some(addr));
                        if onode.is_ok() {
                            node = onode.unwrap();
                        } else {
                            return Bterator { dat: &mut self.dat,
                                                addr: addr,
                                                node: dummy,
                                                direction: direction }
                        }
                        index = node.node_list.elementcount - 1;
                    }
                    return Bterator { dat: &mut self.dat,
                                        addr: addr,
                                        node: node,
                                        direction: direction }
                } else {
                    return Bterator { dat: &mut self.dat,
                                        addr: 0,
                                        node: dummy,
                                        direction: direction }
                }
            }
        } else {
            let iteroption = key.unwrap();
            let value = iteroption.unwrap();
            let olookup = self.lookup_internal(&KeyAddr::<T>::new(value.clone(),0));
            if olookup.is_ok() {
                let lookup = olookup.unwrap();

                    let mut bnode = lookup.bnode.unwrap();
                    let mut index = if direction == IterDirection::Forward {
                        0
                    } else {
                        bnode.node_list.elementcount - 1
                    };

                    let modifier = {
                        if direction == IterDirection::Forward {
                            if iteroption == IterOption::Excluding(value) {
                                if lookup.index.unwrap() != 0 {
                                    1
                                } else {
                                    if lookup.found {
                                        1
                                    } else {
                                        0
                                    }
                                }
                            } else {
                                if lookup.found {
                                    0
                                } else {
                                    if lookup.index.unwrap() == 0 {
                                        0
                                    } else {
                                        1
                                    }
                                }
                            }
                        } else {
                            if iteroption == IterOption::Excluding(value) {
                                if lookup.found {
                                    1
                                } else {
                                    if lookup.index.unwrap() == 0 {
                                        1
                                    } else {
                                        0
                                    }
                                }
                            } else {
                                0
                            }
                        }
                    };
                    for i in if direction == IterDirection::Forward {
                                0..lookup.index.unwrap() + modifier
                            } else {
                                0..(bnode.node_list.elementcount - 1 - lookup.index.unwrap()
                                    + modifier)
                            }
                        {
                        bnode.node_list.delete_by_index(index as usize);
                        index = if direction == IterDirection::Forward {
                            0
                        } else {
                            if bnode.node_list.elementcount == 0 {
                                break;
                            }
                            bnode.node_list.elementcount - 1
                        }
                    }
                    Bterator { dat: &mut self.dat,
                                addr: lookup.addr,
                                node: bnode,
                                direction: direction }

            } else {
                Bterator { dat: &mut self.dat,
                            addr: 0,
                            node: dummy,
                            direction: IterDirection::Forward }
            }
        }

    }

}


#[derive(Debug)]
struct InternalLookup<T: PartialOrd + KnownSize + Debug> {
    // true if lookup found the KeyAddr
    found: bool,
    // the Node where the KeyAddr is to be located. If Tree is empty, bnode is None
    bnode: Option<Bnode<T>>,
    // the address of the Node in the BStar File
    addr: u64,
    // the index where KeyAddr is to be located in the SortedList of bnode
    // if tree is empty, index is None
    index: Option<u64>,
    // the address targeting the datarecord in the table file
    target: Option<u64>
}


const BnodeElementCountOffset: u64 = 26;
const BnodeIsRootOffset: u64 = 25;
const BnodeLeftBrotherOffset: u64 = 8;
const BnodeRightBrotherOffset: u64 = 16;
#[derive(Debug,RustcDecodable, RustcEncodable)]
pub struct Bnode<T: PartialOrd + KnownSize + Debug> {
    pub node_list: SortedList<KeyAddr<T>>,
    pub father: u64,
    pub leftbrother: Option<u64>,
    pub rightbrother: Option<u64>,
    // 0 = no leaf, else leaf
    pub is_leaf: bool,
    //0 = no root, else root
    pub is_root: bool,
    order: u64
}

impl<T: PartialOrd + KnownSize + Debug> Bnode<T> {

    /// creates a new Bnode Object
    /// all u64 fields are addresses to other nodes
    pub fn create(
                node_list: SortedList<KeyAddr<T>>,
                father: u64,
                leftbrother: Option<u64>,
                rightbrother: Option<u64>,
                is_leaf: bool,
                is_root: bool,
                order: u64)
                -> Bnode<T>
        {

        Bnode {
            node_list: node_list,
            father: father,
            leftbrother: leftbrother,
            rightbrother: rightbrother,
            is_leaf: is_leaf,
            is_root: is_root,
            order: order
        }
    }

    /// reads a Bnode from disc at the specefied addr in the specified file
    pub fn read(file: &mut File, addr: Option<u64>) -> Result<Bnode<T>> {
        try!(seek_maybe(file, addr));
        let father = try!(file.read_u64::<BigEndian>());
        let leftbrother = if try!(file.read_u8()) == 1 {
                Some(try!(file.read_u64::<BigEndian>()))
            } else {
                try!(file.read_u64::<BigEndian>());
                None
            };
        let rightbrother = if try!(file.read_u8()) == 1 {
                Some(try!(file.read_u64::<BigEndian>()))
            } else {
                try!(file.read_u64::<BigEndian>());
                None
            };

        let is_leaf = if try!(file.read_u8()) == 1 {
            true
        } else {
            false
        };
        let is_root = if try!(file.read_u8()) == 1 {
            true
        } else {
            false
        };;
        let elementcount = try!(file.read_u64::<BigEndian>());
        let order = try!(file.read_u64::<BigEndian>());
        let mut list = SortedList::<KeyAddr<T>>::with_capacity((order * 2) as usize);
        for i in 0..elementcount {
            let keyaddr = try!(KeyAddr::<T>::read(file, None ));
            list.insert(keyaddr);
        }

        Ok(Bnode {
            node_list: list,
            father: father,
            leftbrother: leftbrother,
            rightbrother: rightbrother,
            is_leaf: is_leaf,
            is_root: is_root,
            order: order
            }
        )
    }

    /// writes a Bnode from disc at the specefied addr in the specified file
    pub fn write(&mut self, file: &mut File, addr: Option<u64>) -> Result<()> {
        try!(seek_maybe(file, addr));
        try!(file.write_u64::<BigEndian>(self.father));
        if self.leftbrother.is_some() {
            try!(file.write_u8(1));
            try!(file.write_u64::<BigEndian>(self.leftbrother.unwrap()));
        } else {
            try!(file.write_u8(0));
            try!(file.write_u64::<BigEndian>(0));
        }

        if self.rightbrother.is_some() {
            try!(file.write_u8(1));
            try!(file.write_u64::<BigEndian>(self.rightbrother.unwrap()));
        } else {
            try!(file.write_u8(0));
            try!(file.write_u64::<BigEndian>(0));
        }

        if self.is_leaf {
            try!(file.write_u8(1));
        } else {
            try!(file.write_u8(0));
        }
        if self.is_root {
            try!(file.write_u8(1));
        } else {
            try!(file.write_u8(0));
        }
        try!(file.write_u64::<BigEndian>(self.node_list.elementcount));
        try!(file.write_u64::<BigEndian>(self.order));
        for i in 0..self.order * 2 {
            match self.node_list.get_by_index(i as usize) {
                Some(keyaddr) => {
                    try!(keyaddr.write(file, None));
                },
                None => (),
            }
        }
        Ok(())

    }

    /// returns the size of the Bnode calculated using the order of the hosting B* tree
    pub fn size(order: u64) -> u64 {
        ((KeyAddr::<T>::size() * (order * 2)) + 44)
    }
}


#[derive(Debug,RustcDecodable, RustcEncodable)]
pub struct SortedList<T: PartialOrd + Debug> {
    pub list: Vec<T>,
    pub elementcount: u64,

}

impl<T: PartialOrd + Debug> SortedList<T> {

    /// generates a new SortedList
    pub fn new() -> SortedList<T> {
        SortedList { list: Vec::new(), elementcount: 0}
    }

    /// allocates some memory for the new sorted list
    pub fn with_capacity(size: usize) -> SortedList<T> {
        SortedList { list: Vec::with_capacity(size), elementcount: 0 }
    }

    /// returns true when the list is empty
    pub fn empty(&self) -> bool {
        self.elementcount == 0
    }

    /// inserts a given key at a given index
    pub fn insert_at_index(&mut self, index: usize, key: T) {
        self.list.insert(index,key);
        self.elementcount += 1;
    }

    /// returns the index where the inserted value is located
    pub fn insert(&mut self, value: T) -> u64 {
        if self.empty() {
            self.list.push(value);
            self.elementcount +=1;
            0
        } else {
            let res = self.get_index_by_key_rec(&value, 0, (self.elementcount - 1) as usize);
            if self.list[res.1].partial_cmp(&value) == Some(Ordering::Less) {
                self.list.insert(res.1 + 1, value);
                self.elementcount +=1;
                (res.1 + 1) as u64
            } else {
                self.list.insert(res.1, value);
                self.elementcount +=1;
                res.1 as u64
            }
        }
    }

    /// Splits the SortedList into 2 based on index.
    /// After calling this function the original list will contain
    /// the data from [0, index], the returned List will contain the data from
    /// (index, elementcount)
    ///
    /// panics if index is out of bounds
    pub fn split_by_index(&mut self, index: usize) -> SortedList<T>{
        let mut second = SortedList::<T>::new();
        let tmp = self.elementcount;
        for i in 1..(tmp - (index as u64)) {
            second.list.insert(0, self.list.remove((tmp-i) as usize));
            second.elementcount+=1;
            self.elementcount-=1;
        }

        second

    }

    /// behaves as split_by_index but splits the list at the key position
    pub fn split_by_key(&mut self, key: &T) -> SortedList<T> {
        let index = self.get_index_by_key(&key).1;
        self.split_by_index(index)
    }

    /// deletes and returns a given key
    pub fn delete_by_key(&mut self, value: &T) -> Option<T> {
        if self.empty() {
            return None
        };
        let res = self.get_index_by_key_rec(value, 0, (self.elementcount - 1) as usize);
        if !res.0 {
            None
        } else {
            self.elementcount -=1;
            Some(self.list.remove(res.1))

        }
    }

    /// deletes a key at indexposition
    pub fn delete_by_index(&mut self, index: usize) -> Option<T> {
        if  index >= 0 && index <= ( self.elementcount -1 ) as usize {
            self.elementcount-=1;
            Some(self.list.remove(index))
        } else {
            None
        }
    }

    /// returns a mutable reference to a key found at index
    pub fn get_by_index(&mut self, index: usize) -> Option<&mut T> {
        if index >= 0 && index <= ( self.elementcount - 1 ) as usize {
            Some(&mut self.list[index])
        } else {
            None
        }
    }

    /// returns a mutable reference to a key found by searching for it
    pub fn get_by_key(&mut self, tofind: &T) -> Option<&mut T> {
        let res = self.get_index_by_key_rec(tofind, 0 , (self.elementcount - 1) as usize);
        if res.0 {
            Some(&mut self.list[res.1])
        } else {
            None
        }
    }

    /// returns the indexvalue where a key is located, or if it wasn't found
    /// where it's proper place would be:
    /// [0,1,5] <- serching for 3 will result in
    /// (false, 2)
    pub fn get_index_by_key(&self, tofind: &T) -> (bool, usize) {
        self.get_index_by_key_rec(tofind, 0, (self.elementcount - 1) as usize)
    }

    fn get_index_by_key_rec(&self, tofind: &T, lo: usize, hi: usize) -> (bool, usize) {

        if hi == lo {
            if self.list[hi].partial_cmp(tofind) == Some(Ordering::Equal) {
                return (true, hi)
            }
            return (false, hi)
        } else if hi < lo {
            return (false, ( hi + lo ) /2)
        }

        let mid = (lo + hi + 1) / 2;

        match self.list[mid].partial_cmp(&tofind) {
            Some(Ordering::Equal) => (true, mid),
            Some(Ordering::Greater) => self.get_index_by_key_rec(tofind, lo, mid - 1),
            Some(Ordering::Less) => self.get_index_by_key_rec(tofind, mid + 1, hi),
            None => (false, mid)
        }
    }



}



#[derive(Debug,RustcDecodable, RustcEncodable, Clone)]
pub struct KeyAddr<T: PartialOrd + KnownSize + Debug> {
    pub key: T,
    pub addr: u64,
}

impl<T: PartialOrd + KnownSize + Debug> KeyAddr<T> {
    /// returns a new KeyAddr object
    pub fn new(key: T, addr: u64) -> KeyAddr<T> {
        KeyAddr { key: key, addr: addr}
    }
}

impl<T: PartialOrd + KnownSize + Debug> PartialOrd for KeyAddr<T> {
    fn partial_cmp(&self, other:&Self) -> Option<Ordering> {
        self.key.partial_cmp(&other.key)
    }
}

impl<T: PartialOrd + KnownSize + Debug> PartialEq for KeyAddr<T> {
    fn eq(&self, other: &Self) -> bool {
        self.key.eq(&other.key)
    }
}


impl<T: KnownSize + PartialOrd + Debug> KnownSize for KeyAddr<T> {
    /// calculates the size of KeyValue Objects
    fn size() -> u64 {
        // Size of Key + 8 for addr
        T::size() + 8
    }

    /// reads a KeyValue ojbect from disc at the specified file and addr
    fn read(file: &mut File, addr: Option<u64>) -> Result<KeyAddr<T>> {
        let key = try!(T::read(file, addr));
        let tmp = try!(u64::read(file, None));
        Ok(KeyAddr::new(key,tmp))
    }

    /// writes a KeyValue ojbect to disc at the specified file and addr
    fn write(&self, file: &mut File, addr: Option<u64>) -> Result<()> {
        try!(self.key.write(file, addr));
        Ok(try!(self.addr.write(file, None)))
    }

    /// writes a default version of KeyValue
    fn write_default(file: &mut File, addr: Option<u64>) -> Result<()> {
        try!(seek_maybe(file, addr));
        try!(T::write_default(file, None));
        Ok(try!(u64::write_default(file, None)))
    }


}


impl KnownSize for u64 {
    fn size() -> u64 {
        8
    }

    fn read(file: &mut File, addr: Option<u64>) -> Result<u64> {
        try!(seek_maybe(file, addr));
        Ok(try!(file.read_u64::<BigEndian>()))
    }

    fn write(&self, file: &mut File, addr: Option<u64>) -> Result<()> {
        try!(seek_maybe(file, addr));
        Ok(try!(file.write_u64::<BigEndian>(*self)))
    }

    fn write_default(file: &mut File, addr: Option<u64>) -> Result<()> {
        try!(seek_maybe(file, addr));
        Ok(try!(file.write_u64::<BigEndian>(0)))
    }
}




fn seek_maybe(file: &mut File, addr: Option<u64>) -> Result<()> {
    Ok(match addr {
        Some(addr) => {
            try!(file.seek(SeekFrom::Start(addr)));
            ()
        },
        None => (),
    })

}

#[derive(PartialEq, Debug)]
pub enum IterOption<T: PartialEq + Debug + Clone> {
    Including(T),
    Excluding(T),

}
impl<T: PartialEq + Debug + Clone> IterOption<T> {
    fn unwrap(&self) -> T {
        match self {
            &IterOption::Including(ref t) => t.clone(),
            &IterOption::Excluding(ref t) => t.clone(),
        }
    }
}
#[derive(PartialEq, Debug)]
pub enum IterDirection {
    Forward,
    Backward,
}
#[derive(Debug)]
pub struct Bterator<'a, T: KnownSize + PartialOrd + Debug> {
    dat: &'a mut File,
    addr: u64,
    node: Bnode<T>,
    direction: IterDirection,
}

impl<'a,T: KnownSize + PartialOrd + Debug> Iterator for Bterator<'a,T> {
    type Item = KeyAddr<T>;

    fn next(&mut self) -> Option<KeyAddr<T>> {
        if self.node.node_list.elementcount == 0 {
            let brother = match self.direction {
                IterDirection::Forward => self.node.rightbrother,
                IterDirection::Backward => self.node.leftbrother,
            };
            self.addr = match brother {
                Some(addr) => addr,
                None => return None,
            };
            let node = Bnode::<T>::read(&mut self.dat, Some(self.addr));
            if node.is_ok() {
                self.node = node.unwrap();
            } else {
                return None
            }
        }
        let index = match self.direction{
            IterDirection::Forward => 0,
            IterDirection::Backward => self.node.node_list.elementcount - 1,
        };
        Some(self.node.node_list.delete_by_index(index as usize).unwrap())
    }
}